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ALTERNATING HAMILTONIAN CYCLES 

BY 

BI~LA BOLLOBAS AND PAUL ERDOS 

ABSTRACT 

Colotlr the edges of a complete graph with n vertices in such a way that no 
vertex is on more than k edges of the same colour. We prove that for every k 
there is a constant ck such that if n > c~ then there is a Hamiltonian cycle with 
adjacent edges having different colours. We prove a number of other results in 
the same vein and mention some unsolved problems. 

Given the natural  numbers  n and d, denote  by K, (Ac --< d )  a complete graph 

with n vertices whose edges are co loured  in such a way that no vertex is on more 

than d edges of the same colour. [We deno te  by Ac the maximal degree in the 

subgraph formed by the edges of colour  c.] These graphs were examined by 

Daykin  [1], who proved that if d = 2 and n _-> 6 then every such graph contains a 

Hamiltonian cycle whose adjacent  edges have different colours. Daykin  [1] also 

asked whether  this holds for every d and every sufficiently large n (depending on 

d). We shall answer this quest ion in the affirmative. We shall also prove a 

number  of  related results; a m o n g  others  we shall give partial solutions to o ther  

problems stated in [1]. 

D e n o t e  by AC~ a cycle of length l in which adjacent  edges have different 

colours.  These  are the alternating cycles and the alternating paths are defined 

analogously.  Our  main result about  the existence of an A C ,  in a K,  (Ac _-< d)  will 

be p roved  by using certain auxiliary subgraphs,  subgraphs in which it is 

part icularly easy to construct  al ternating paths. Let  us show first that  

K,  (Ac -- d)  contains a large subgraph with a stricter condit ion on the degree.  

LEMMA 1. Let n >-_ d >= 6 >-_ 1 be natural numbers and let r be a natural number 

such that 

rl+2/S d < n. 
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Then every G = K, (A~ <= d) contains an H = K, (Ac _-< 6). In particular, if 

64d < n then every G = K, (Ac <= d) contains a K4(Ac _-< 1). 

PROOF. Denote by ~r the set of complete subgraphs of G with r vertices and 

if x is a vertex of G, let 

aCx = {L ~ ar L contains at least 6 + 1 edges of the same 

colour, ending at x}. 

Denote by di, ..., d, the degrees of x in the subgraphs formed by the various 

colour classes. Then d~ <= d and Etl d~ = n - l , so by the convexity of f ( t )= (~ ) 

we have 

, = ;  \ r - ( 8  + 2 ) ]  

Consequently, if ~ = tO ~tx, where the union is over all vertices, 

d l ) ( 7 - ( 8 + 2 ' ] / ( n ) < n - " r ~ + : d S < l  
- ( 6 + 2 ) / /  

Thus [ar J >J ~ ] and by construction every H E ar - ~ will do for the lemma. 

Denote by V ( G )  the vertex set of a graph G.  If a, b ~ V ( G ) ,  c (ab) denotes 

the colour of the edge ab. 

LEMMA 2. Suppose G = K, (Ac <-- d) contains an alternating path P that ends 

at a vertex x, a vertex y not on P and s >- d/4 vertex disjoint K4 (Ac _-< 1) subgraphs, 

say H1, 1-12, ..., Hs. Then the following assertions hold. 

(i) There is an index I such that P can be continued to an alternating path P* 

that goes through the four vertices of Ill. 

(ii) If a ~ V (H 0, b E V (H2) and i, j are given colours, there is an alternating 

path Q from a to b, going through the eight vertices of H~ and H2 such that the first 

edge of Q does not have colour i and the last edge does not have colour j. 

PROOF. (i) Denote by k the colour of the last edge of P. As there are at most 

d - 1 other edges of colour k ending at x, there is an index i such that at least 

one of the edges joining x to H~ has colour different from k. Let kl, k2, k3, k4 be 

the vertices of H~. We can suppose without loss of generality that c (xh 0 ~ k and 

C (hah4)~ c (h4y). Then we can put P * =  Phlh2h3h4y. 

(ii) Denote the vertices of H~ by a = a~, a2, a3, a4 and the vertices of/-/2 by 

b = bl, b2, b3 and b,. We can suppose without loss of generality that 
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c (aT a2) ~ if i  c (a~ a3) and c (b~ b2) ~ j ~  c (b~ b3). Furthermore, as 

c (a2 a4)~ c (a3 a4) and c (b2 b4)fi c (b3 b4), by symmetry we can suppose that 

c (a3 a4) ~ c (a4 b4) ~ c (b3 b4). Then we can put Q = al a2 a3 a4 b4 b3 bz b~. 

Our first main result is an almost immediate consequence of these lemmas. 

THEOREM 1. I[ 69d < n then every G = K,  (Ac <= d)  contains an alternating 

Hami l tonian  cycle. 

PROOF. As n - 4 1 5 d / 4 ]  >64d,  by Lemma 1 the graph G contains s = 

[5d/4] + 1 vertex disjoint K4(Ac =< 1) subgraphs, say H1,/-/2,-'., Hs. Let P be a 

maximal alternating path in H = G - [.J ;/-/,. Then H -  P contains at most 

d - 1  vertices. By Lemma 2(i) in G the path P can be continued to an 

alternating path P* containing all these vertices and the vertices of at most d - 1 

of the graphs Hi. Consequently there are t => [d/4] + 2 subgraphs disjoint from 

P* ,  say Hh/-/2, "", H,. Denote by Xl (resp. x2) the first (resp. last) vertex of P* 

and by i, (resp. i2) the colour of the first (resp. last) edge of P* .  There are at 

most (d - 1)/4 subgraphs Hi such that every edge joining x (resp. y) to a vertex 

of Hi has colour il (resp. i2). Therefore one can find vertices a~ ~ V (/-/~), a2E 

V ( h j ) ,  1 <= i ~ j  <- t, such that c (x~ a l ) ~  i, and c (x2 a2)~ i2. 

By Lemma 2 (ii) there is an alternating path Q from a2 to al going through all 

the vertices of I,.J ', ~ such that the colour of the first edge is not c (x2 a2) and 

the colour of the last edge is not c (xl a 0 . Then al x~ P* x2 a2 Qa~ is clearly an 

alternating Hamiltonian cycle. This completes the proof of the theorem. 

REMARKS. 1. Exactly the same proof gives that under the conditions given in 

the theorem every G = K, (Ac _--< d) contains an ACt  for every 1,3_- < l _-< n. 

2. In the first version of the paper we proved Theorem 1 under the condition 

n > c, d 2§ (e > 0), and only the referee's remarks made us prove this stronger 

form. A similar result has been proved independently by Chen and Daykin. 

Though the bound n > 69d might not seem to be too bad, we suspect that it is 

very far from being the best possible, since from below we can construct 

practically nothing. (See the first conjecture at the end of the paper.) 

Let us examine now the related questions. These questions arose in connec- 

tion with the auxiliary subgraphs used in the proof of Theorem 1, but we think 

they are interesting on their own. Let a > 0 be a given constant. How large does 

n have to be if every K, (Ac =< d) contains a Ka~ (Ac =< 1)? How large does n 

have to be if every K, (Ac -< d) contains a complete subgraph with at least t~d 

vertices without 2 edges of the same colour? We cannot give a complete answer 

to either of these questions but we prove reasonably good estimates. 
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THEOREM 2. a) I f  a 3 d4 < n then every K,  (/L <= d) contains a K ~  (Ac =< 1). 

b) There is a constant C such that if d 3 > Cn(log n) 3 then there is a K,  (Ac =< d)  

that does not contain a Kt~dl (Ac __< 1). 

PROOF. The first part is contained in Lemma 1. To prove b) we apply a 

probabilistic argument. 

It will be clear from the argument that it is sufficient to prove the result when 

k = n 1/3 is an integer and n is sufficiently large. 

Colour the edges of a K~ (complete graph with n vertices) with n /k  colours, 

giving each colour probability k /n .  Then with probability > 1/2 the obtained 

graph G will be a K, (A~ =< d) ,  where d = [k log n] .  Let us choose a complete 

subgraph H of G with r + 1 = [ad] vertices. If x is a vertex of H,  the probability 

that H does not contain 2 edges ending at x that have the same given colour (say 

colour 1) is 

- r 2 k 2 

Consequently the probability that H does not contain 2 adjacent edges of the 

same colour is at most 

Now 

1 r~ k~ '~/(2k) 
" 

1 - r2 k2~/(2k) 

as n ~ o o .  In particular, if n is sufficiently large, the probability that H is a 

(:)' K,+I (Ac _-_N 1) is < /2. Thus there exists a G = K~ (Ac _-_N d) that does not 

contain a Kt,d~ (Ac ----< 1), as claimed. 

THEOREM 3. a) I f  r4d < n then every K,  (Ac N d) contains a complete sub- 

graph with r vertices without 2 edges of the same colour. 

b) There is a constant C such that if d 4 > Cn(log n) 4 then there is a K~ (Ac _-< d) 

in which every complete subgraph with r = [ad] vertices contains 2 edges of the 

same colour. 

PROOF. The proof of the first part is analogous to the proof of Lemma 1 and 

the proof of the second part is exactly the same probabilistic argument as the 

proof of Theorem 2b). We omit the details. 
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Let  us denote  by K, (Xo --> A ) a complete graph with n vertices whose edges are 

coloured in such a way that each vertex is on at least A edges of different colour. 

[Xo -- number of colours appearing among the edges containing a vertex v.] 

Daykin posed the question of finding a A, as small as possible, such that every 

K, (Xo -> A) contains an alternating Hamiltonian cycle. We shall show that 

A _-> (7/8)n will do. We also give an example showing that A = [(n + 2)/3] will no 

longer do. 

THEOREM 4. Every K, (Xv >= (7/8)n) contains an alternating Hamiltonian 
cycle. 

PROOF. Put e = 1/8 and let G = K, (Xo -> (1 - e)  n) .  If e = xy is an edge of 

G,  let c ( e ) = c ( x y )  be its colour. Call an edge xy of G x-unique if 

c ( x y ) ~  c (xz) if z ~  y. Call an edge xy unique if it is both x-unique and 

y-unique. 

Let C be a cycle of maximal length in G,  say length l, consisting of unique 

edges. As there are at least (1 - 2e)  n x-unique edges for each vertex x, there are 

at least ( 1 - 2 e ) n  z -  ( 2 ) = ( � 8 9  =(n2/4)+(n/2)  unique edges. 

Therefore  l >-_ n/2 (see [2]). 

Let Lz be a longest alternating path in G - C, let L2 be a longest alternating 

path in G - C - L 1 ,  etc. Suppose we obtain the paths Lt, L2, -'-, L, with 11, 12, ..., l, 

vertices, respectively. Then l + E~ l~ = n and l~ _-> 2 if i < t. 

It is easily seen that if L, is an a, b, -path, where a, might coincide with b,, then 

C contains adjacent vertices c,, d, such that the path c, a,L, b, d, is an alternating 

path. Suppose now that Ls (s > t) in an a~bs -path, beginning with the edge a~a: 
and ending with the edge b'sb~. Then at most en - 2 - E:+I l~ of the edges a~c, c a 

vertex of C, have the same colour as as a 's, and a similar assertion holds for be. It 

is easily checked that 

2 ( e n - 2 - ~  6 ) + 2 ( t - s ) +  

Therefore  one can choose inductively different vertices of C, say 

c,, d,, c,-i, d,_l, ..., c~, dr, such that c, and dl are adjacent vertices of C and the 

paths Pi = c~ a~ L~ b~ d~ are alternating, i = t, t - 1, ..., 1. Replacing the edge c~ d~ of 

C by the path P,, we obtain an alternating Hamiltonian cycle, as required. 

OPEN PROBLEMS AND CONJECTURES. It is likely that Theorems 1 and 4 (our 

main results) can be strengthened considerably. The values at which these 
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theorems are known to fail are much smaller than the bounds we needed to 

prove the existence of alternating cycles and we suspect that these rather feeble 

looking examples are nearer to the truth than our positive results. 

1. Le t  n = 4k + 1. Then the edges of K. can be coloured with red and blue 

in such a way that at each vertex there are 2k red and 2k blue edges. This is a 

K4k. l  (Ac < 2 k )  that does not contain an AC4k+I. We do not know a K, (Ac __< d) 

with d < In/2] that does not contain an AC,~+, and we suspect that there might 

not be one. So the problem is the following. Does every K,(Ac <= [ n / 2 ] - 1 )  

contain an alternating Hamiltonian cycle ? 

2. Let k = [(n - 1)/3] and colour the edges of K, with colours 0, 1, ..., k + 1 

in the following way. Let Xo, xl, " ' ,  xk-i be k arbitrary vertices of K, and divide 

the remaining vertices into k non-empty classes, So, S~,..., S~_1. If y ~ Sj colour 

the edge x~y with the colour I i - j J. Use the colour k to colour the edges xixj and 

the edges yz, y, z ~ U o ~-~ S,. In this colouring of K, with k + 1 colours every 

vertex is on an edge of each colour. Clearly there is no alternating Hamiltonian 

cycle since every Hamiltonian cycle has three consecutive vertices in U o k-~ S~. It 

is not impossible that this example is essentially best possible, perhaps even 

without the restriction that each vertex is on an edge of each colour. In other 

words can Theorem 4 be sharpened to the following? 

Every K.  (Xo >= [(n + 5)/3]) contains an alternating Hamiltonian cycle. 
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